大单元导学案一 第1课时 力与物体的平衡
时间:2023-05-16 09:14 来源:未知 作者:admin 点击:次
![]() ![]() ![]() 第1课时 力与物体的平衡![]() ![]() 高考题型1 静态平衡问题1.研究对象的选取:整体法和隔离法.2.受力分析的方法 (1)假设法. (2)转换研究对象法:根据牛顿第三定律,如图1. ![]() 图1 (3)动力学分析法:根据牛顿第二定律,由加速度方向判定合力的方向,从而确定某一个力的方向,如图2. ![]() 图2 3.共点力平衡的常用处理方法
考向一 合成法 例1 (2020·全国卷Ⅲ·17)如图3,悬挂甲物体的细线拴牢在一不可伸长的轻质细绳上O点处;绳的一端固定在墙上,另一端通过光滑定滑轮与物体乙相连.甲、乙两物体质量相等.系统平衡时,O点两侧绳与竖直方向的夹角分别为α和β.若α=70°,则β等于( ) ![]() 图3 A.45° B.55° C.60° D.70° 答案 B 解析 取O点为研究对象,在三力的作用下O点处于平衡状态,对其受力分析如图所示,根据几何关系可得β=55°,故选B. ![]() 考向二 正交分解法 例2 如图4所示,金属棒ab质量为m,通过电流为I,处在磁感应强度为B的匀强磁场中,磁场方向与导轨平面夹角为θ,ab静止于宽为L的水平导轨上.下列说法正确的是( ) ![]() 图4 A.金属棒受到的安培力大小为F=BILsin θ B.金属棒受到的摩擦力大小为Ff=BILcos θ C.若只改变电流方向,金属棒对导轨的压力将增大 D.若只增大磁感应强度B后,金属棒对导轨的压力将增大 答案 C 解析 金属棒受到的安培力大小F=BIL,故A错误;电流方向从a到b,受力分析如图所示,根据平衡条件有Ff=Fsin θ=BILsin θ,FN=G-Fcos θ=G-BILcos θ,若只增大磁感应强度B后,导轨对金属棒的支持力减小,所以金属棒对导轨的压力减小,故B、D错误;若只改变电流方向,安培力方向将变为斜向右下,安培力在竖直方向上的分力竖直向下,所以金属棒对导轨的压力将增大,故C正确. ![]() ![]() ![]() (1)静电场、磁场中的平衡问题,受力分析时要注意静电力、磁场力方向的判断,再结合平衡条件分析求解. (2)涉及安培力的平衡问题,画受力示意图时要注意将立体图转化为平面图. 考向三 整体法与隔离法在平衡中的应用 例3 (2021·辽宁省1月适应性测试·7)如图5所示,用轻绳系住一质量为2m的匀质大球,大球和墙壁之间放置一质量为m的匀质小球,各接触面均光滑.系统平衡时,绳与竖直墙壁之间的夹角为α,两球心连线O1O2与轻绳之间的夹角为β,则α、β应满足( ) ![]() 图5 A.tan α=3cot β B.2tan α=3cot β C.3tan α=tan(α+β) D.3tan α=2tan(α+β) 答案 C 解析 设绳子拉力为FT,墙壁支持力为FN,两球之间的压力为F,将两个球作为一个整体进行受力分析,可得FTcos α=3mg,FTsin α=FN 对小球进行受力分析,可得Fcos (α+β)=mg, Fsin (α+β)=FN,联立得3tan α=tan (α+β) 故选C. 高考题型2 动态平衡问题1.解决动态平衡问题的一般思路化“动”为“静”,多个状态下“静”态对比,分析各力的变化或极值. 2.三力作用下的动态平衡 ![]() 3.四力作用下的动态平衡 (1)在四力平衡中,如果有两个力为恒力,或这两个力的合力方向确定,为了简便可用这两个力的合力代替这两个力,转化为三力平衡,例如: 如图6,qE<mg,把挡板缓慢转至水平的过程中,可以用重力与静电力的合力mg-qE代替重力与静电力. ![]() 图6 如图7,物体在拉力F作用下做匀速直线运动,改变θ大小,求拉力的最小值,可以用支持力与摩擦力的合力F′代替支持力与摩擦力.(tan θ=μ) ![]() 图7 (2)对于一般的四力平衡及多力平衡,可采用正交分解法. 考向一 图解法 例4 (2021·山东潍坊市昌乐一中高三期末)如图8所示,斜面体A放在粗糙水平面上,小球B用轻绳拴住置于斜面上,轻绳与斜面平行且另一端固定在竖直墙面上,不计小球与斜面间的摩擦.现用水平向左的力缓慢拉动斜面体,小球始终未脱离斜面.下列说法正确的是( ) ![]() 图8 A.轻绳的拉力先变小后变大 B.斜面对小球的支持力不变 C.水平面对斜面体的摩擦力变小 D.水平面对斜面体的支持力变大 答案 C 解析 对小球受力分析如图所示, ![]() 轻绳的拉力变大,斜面对小球的支持力变小,A、B错误;轻绳的竖直分力在变大,将小球和斜面体看作一个整体,则水平面对斜面体的支持力变小,根据滑动摩擦力公式可知,水平面对斜面体的摩擦力变小,C正确,D错误. 考向二 相似三角形法 例5 (多选)(2020·百校联盟必刷卷三)如图9所示,光滑圆环固定在竖直面内,一个小球套在环上,用穿过圆环顶端光滑小孔的细线连接,现用水平力F拉细线,使小球缓慢沿圆环向上运动,此过程中圆环对小球的弹力大小为FN,则在运动过程中( ) ![]() 图9 A.F增大 B.F减小 C.FN不变 D.FN增大 答案 BC 解析 小球沿圆环缓慢上移,对小球进行受力分析,小球受重力G、F、FN三个力,满足受力平衡.作出受力分析图如图所示; ![]() 由图可知△OAB∽△GFNF,即: == 小球沿圆环缓慢上移时,半径不变,重力G不变,AB长度减小,故F减小,FN不变,故选B、C. 考向三 解析法 例6 如图10所示,晾晒衣服的绳子轻且光滑,悬挂衣服的衣架的挂钩也是光滑的,轻绳两端分别固定在两根竖直杆上的A、B两点,衣服处于静止状态.如果保持绳子A端位置不变,将B端分别移动到不同的位置,则下列判断正确的是( ) ![]() 图10 A.B端移动到B1位置时,绳子张力变大 B.B端移动到B2位置时,绳子张力变小 C.B端在杆上位置不动,将杆移动到虚线位置时,绳子张力变大 D.B端在杆上位置不动,将杆移动到虚线位置时,绳子张力变小 答案 D 解析 如图所示,设绳子间的夹角为2α,绳子总长为L,两杆间距离为s,由几何关系得L1sin α+L2sin α=s,解得sin α==,当B端移到B1、B2位置时,s、L都不变,则α也不变,由平衡条件可知2Fcos α=mg,绳子张力F=,α不变,绳子张力F也不变,A、B错误;B端在杆上位置不动,将杆移动到虚线位置时,s减小,L不变,则α减小,cos α增大,由F=知,F减小,C错误,D正确. ![]() ![]() 1.如图11所示,竖直平面内固定的半圆弧轨道两端点M、N连线水平,将一轻质小环套在轨道上,一细线穿过轻环,一端系在M点,另一端系一质量为m的小球,不计所有摩擦,重力加速度为g,小球恰好静止在图示位置,下列说法正确的是( ) ![]() 图11 A.轨道对轻环的支持力大小为mg B.细线对M点的拉力大小为 C.细线对轻环的作用力大小为 D.N点和轻环的连线与竖直方向的夹角为30° 答案 D 解析 对圆环受力分析,因圆环两边细线的拉力大小相等,可知两边细线拉力与OA夹角相等,设为θ,由几何关系可知,∠OMA=∠MAO=θ,则3θ=90°,θ=30°,则轨道对轻环的支持力大小为FN=2mgcos 30°=mg,选项A错误;细线对M点的拉力大小为FT=mg,选项B错误;细线对轻环的作用力大小为FN′=FN=mg,选项C错误;由几何关系可知,N点和轻环的连线与竖直方向的夹角为30°,选项D正确. ![]() 2.(多选)(2020·安徽安庆二中质检)如图12所示,质量为M的木楔倾角为θ,在水平地面上保持静止.当将一质量为m的木块放在斜面上时正好沿斜面匀速下滑,如果用与斜面成α角的力F拉着木块沿斜面匀速上滑.重力加速度为g,下列说法中正确的是( ) ![]() 图12 A.当α=2θ时,F有最小值 B.F的最小值为mgsin 2θ C.在木块匀速上滑过程中,地面对M的静摩擦力方向水平向右 D.在木块匀速上滑过程中,地面对M的静摩擦力方向水平向左 答案 BD 解析 选木块为研究对象,当没加外力F时正好匀速下滑,设木块与斜面间的动摩擦因数为μ,此时平行于斜面方向必有mgsin θ=μmgcos θ.当加上外力F时,对木块受力分析如图,则有Ff=μFN,平行于斜面方向有Ff+mgsin θ=Fcos α,垂直于斜面方向有FN+Fsin α=mgcos θ,联立解得F==,故当α=θ时,F有最小值,最小值为Fmin=mgsin 2θ,故A错误,B正确;选M和m组成的整体为研究对象,设水平地面对木楔M的静摩擦力为Ff′,水平方向受力平衡,则有Ff′=Fcos(θ+α),可知静摩擦力的方向水平向左,故C错误,D正确. ![]() 3.(多选)如图13所示,表面光滑的半球形物体固定在水平面上,光滑小环D固定在半球形物体球心O的正上方,轻质弹簧一端用轻质细绳固定在A点,另一端用轻质细绳穿过小环D与放在半球形物体上的小球P相连,DA水平.现将细绳固定点A向右缓慢平移的过程中(小球P未到达半球最高点前),下列说法正确的是( ) ![]() 图13 A.弹簧变短 B.弹簧变长 C.小球对半球的压力不变 D.小球对半球的压力变大 答案 AC 解析 以小球为研究对象,受力分析如图,小球受重力G、细线的拉力FT和半球面的支持力FN,作出FN、FT的合力F,由平衡条件得知F=G,由图根据三角形相似可得==,将F=G代入得:FN=G,FT=G,将细绳固定点A向右缓慢平移,DO、PO不变,PD变小,可知FT变小,FN不变,即弹簧的弹力变小,弹簧变短,由牛顿第三定律知小球对半球的压力不变,故A、C正确,B、D错误. ![]() 专题强化练[保分基础练]1.(2021·江苏省1月适应性考试·3)如图1所示,对称晾挂在光滑等腰三角形衣架上的衣服质量为M,衣架顶角为120°,重力加速度为g,则衣架右侧对衣服的作用力大小为( ) ![]() 图1 A.Mg B.Mg C.Mg D.Mg 答案 B 解析 对衣服进行受力分析,如图所示: ![]() 由几何关系知,衣架左、右侧对衣服的作用力FN与竖直方向的夹角为30°, 则有2FNcos 30°=Mg, 得FN=Mg,故选B. 2.戽斗是古代一种小型的人力提水灌田农具,是我国古代劳动人民智慧的结晶.如图2所示,两人双手执绳牵斗取水,在绳子长度一定时( ) ![]() 图2 A.两人站得越近越省力 B.两人站得越远越省力 C.两边绳子与竖直方向夹角为60°时最省力 D.绳子拉力大小与两人距离远近无关 答案 A 3.如图3所示,两个相同的木模质量均为m,靠三根竖直细线连接,在水平面上按一个“互”字形静置,上方木模呈现悬浮效果,这是利用了建筑学中的“张拉整体”结构原理.已知重力加速度为g,则图中短线a上的张力F1和水平面所受压力F2满足( ) ![]() 图3 A.F1>mg,F2<2mg B.F1>mg,F2=2mg C.F1<mg,F2<2mg D.F1<mg,F2=2mg 答案 B 解析 对两个木模的整体受力分析,整体受2mg的重力和水平面的支持力F2′,有F2′=2mg,由牛顿第三定律可知,水平面所受压力F2=F2′,对上方木模分析可知,短线a上的张力F1向上,两长线的拉力FT向下,有2FT+mg=F1,故有F1>mg,故选B. 4.一台空调外机用两个三脚架固定在外墙上,如图4所示,空调外机的重心在支架水平横梁AO和斜梁BO连接点O的上方,横梁对O点的拉力沿OA方向、大小为F1,斜梁对O点的支持力沿BO方向、大小为F2.如果把斜梁加长一点,仍保持连接点O的位置不变,则( ) ![]() 图4 A.F1增大 B.F1减小 C.F2不变 D.F2增大 答案 B 解析 对O点受力分析如图所示 ![]() 由平衡条件得 F1=,F2=,保持连接点O的位置不变,斜梁长度增加,θ变大,所以F1、F2均减小.故选B. 5.(2021·东北三省四市教研联合体3月模拟)如图5所示,物体甲放置在水平地面上,通过跨过光滑轻质定滑轮的轻质细绳与小球乙相连,整个系统处于静止状态.现对小球乙施加水平力F,使小球乙缓慢上升一小段距离,整个过程中物体甲保持静止.设甲受到地面的摩擦力为Ff,支持力为FN,细绳的拉力为FT,则该过程中( ) ![]() 图5 A.Ff变小,F不变 B.FT变大,FN变大 C.Ff变大,FN变小 D.FT不变,F不变 答案 C 解析 取乙为研究对象,分析其受力情况,设与乙相连的细绳与竖直方向夹角为α,则水平力F=mgtan α,细绳与竖直方向夹角α逐渐增大,则F增大;取物体甲为研究对象,甲受到重力、绳子的拉力、地面的支持力以及地面的摩擦力,其中绳子的拉力FT=,α逐渐增大,绳子的拉力FT逐渐增大,FT在水平方向的分力逐渐增大,所以水平地面对甲的摩擦力增大;FT在竖直方向的分力逐渐增大,甲受到地面的支持力FN变小.故选C. 6.(2021·湖北省1月选考模拟·6)如图6所示,矩形平板ABCD的AD边固定在水平面上,平板与水平面夹角为θ,AC与AB的夹角也为θ.质量为m的物块在平行于平板的拉力作用下,沿AC方向匀速运动.物块与平板间的动摩擦因数μ=tan θ,重力加速度大小为g,拉力大小为( ) ![]() 图6 A.2mgsin θcos B.2mgsin θ C.2mgsin D.mgsin θcos 答案 A 解析 对物块受力分析,如图甲、乙所示,重力沿平板向下的分力为mgsin θ,支持力FN=mgcos θ,滑动摩擦力Ff=μFN=mgsin θ,则拉力F=2mgsin θcos ,故A正确. ![]() 7.(2021·黑龙江鹤岗一中三校高三期末联考)如图7所示,将一光滑轻杆固定在水平地面上,杆与地面间的夹角为30°,一光滑轻环(不计重力)套在杆上,一个大小和质量都不计的滑轮通过轻绳OP悬挂在天花板上,用另一轻绳绕过滑轮系在轻环上,现用水平向右的力缓慢拉绳,当轻环静止不动时,OP绳与天花板之间的夹角为( ) ![]() 图7 A.30° B.45° C.60° D.75° 答案 C 解析 对轻环Q进行受力分析如图甲,则只有绳子的拉力垂直于杆时,绳子的拉力沿杆的方向没有分力;由几何关系可知,绳子与竖直方向之间的夹角是30°;对滑轮进行受力分析如图乙,由于滑轮的质量不计,则OP绳对滑轮的拉力与两个绳子拉力的合力大小相等、方向相反,所以OP绳的方向一定在两根绳子夹角的角平分线上,由几何关系得OP绳与竖直方向之间的夹角:β=-30°=30°,则OP绳与天花板之间的夹角为:90°-β=60°,故选C. ![]() 8.(2021·上海交大附中高三上学期1月期末)如图8,光滑绝缘斜面固定在水平面上,一定质量的带电小球A在斜面上保持静止,小球A与斜面间有平行于斜面的细线相连,带电小球B用绝缘杆固定,A、B在同一水平高度,此时斜面对小球A无支持力.现保持B球的水平高度不变,将B球缓慢向左移动一小段距离,则在此过程中( ) ![]() 图8 A.小球A脱离斜面,细线所受的拉力变大 B.小球A脱离斜面,细线所受的拉力变小 C.小球A仍在斜面上,细线所受的拉力变大 D.小球A仍在斜面上,细线所受的拉力变小 答案 A 解析 因为此时斜面对小球A无支持力,可知B球对A球有引力作用;若将B球缓慢向左移动一小段距离,距离减小,则引力变大,则小球A将脱离斜面;B球对A球的引力变大,引力与重力的合力变大,根据力的平衡条件,则细线所受的拉力变大,故选A. [争分提能练] 9.(多选)(2019·全国卷Ⅰ·19)如图9,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N,另一端与斜面上的物块M相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°.已知M始终保持静止,则在此过程中( ) ![]() 图9 A.水平拉力的大小可能保持不变 B.M所受细绳的拉力大小一定一直增加 C.M所受斜面的摩擦力大小一定一直增加 D.M所受斜面的摩擦力大小可能先减小后增加 答案 BD 解析 对N进行受力分析如图所示,因为N的重力与水平拉力F的合力和细绳的拉力FT是一对平衡力,从图中可以看出水平拉力的大小逐渐增大,细绳的拉力也一直增大,选项A错误,B正确;M的质量与N的质量的大小关系不确定,设斜面倾角为θ,若mNg≥mMgsin θ,则M所受斜面的摩擦力大小会一直增大,若mNg<mMgsin θ,则M所受斜面的摩擦力大小可能先减小后反向增大,选项C错误,D正确. ![]() 10.(2021·湖南卷·5)质量为M的凹槽静止在水平地面上,内壁为半圆柱面,截面如图10所示,A为半圆的最低点,B为半圆水平直径的端点.凹槽恰好与竖直墙面接触,内有一质量为m的小滑块.用推力F推动小滑块由A点向B点缓慢移动,力F的方向始终沿圆弧的切线方向,在此过程中所有摩擦均可忽略,下列说法正确的是( ) ![]() 图10 A.推力F先增大后减小 B.凹槽对滑块的支持力先减小后增大 C.墙面对凹槽的压力先增大后减小 D.水平地面对凹槽的支持力先减小后增大 答案 C 解析 对滑块受力分析,由平衡条件有F=mgsin θ, FN=mgcos θ,θ为F与水平方向的夹角,滑块从A缓慢移动到B点时,θ越来越大,则推力F越来越大,支持力FN越来越小,所以A、B错误; 对凹槽与滑块整体受力分析,墙面对凹槽的压力为 FN′=Fcos θ=mgsin θcos θ=mgsin 2θ, 则θ越来越大时,墙面对凹槽的压力先增大后减小,所以C正确; 水平地面对凹槽的支持力为 FN地=(M+m)g-Fsin θ=(M+m)g-mgsin2θ 则θ越来越大时,水平地面对凹槽的支持力越来越小,所以D错误. 11.(多选)(2021·黑龙江齐齐哈尔市实验中学高三期末)如图11所示,有一长为L的轻杆,一端用光滑的铰链固定在墙上,另一端固定一质量为m的小球B,在距铰链正上方L处有一光滑轻质小定滑轮,现用手拉动绕过滑轮并系在小球B上的细线,使小球B缓慢上移,手对细线的拉力大小为F,杆对小球B的弹力大小为FN,重力加速度为g,在移动过程中,下列说法正确的是( ) ![]() 图11 A.F不变,FN减小 B.F减小,FN不变 C.当杆被拉至水平状态时F=mg D.杆对小球B的弹力大小恒为mg 答案 BCD 解析 对B球受力分析,画出力的示意图如图所示 ![]() 根据相似三角形规律有== 解得FN=mg,F= 小球B缓慢上移,重力mg不变,L不变,则杆对小球的弹力大小FN不变,绳子长度lAB减小,所以F减小,A错误,B、D正确;当杆被拉至水平状态时,绳子的长度为lAB=L,由相似三角形关系可得F=mg,C正确. 12.如图12所示,半径为R的圆环竖直放置,长度为R的不可伸长的轻细绳OA、OB,一端固定在圆环上,另一端在圆心O处连接并悬挂一质量为m的重物,初始时OA绳处于水平状态.把圆环沿地面向右缓慢转动,直到OA绳处于竖直状态,在这个过程中( ) ![]() 图12 A.OA绳的拉力逐渐增大 B.OA绳的拉力先增大后减小 C.OB绳的拉力先增大后减小 D.OB绳的拉力先减小后增大 答案 B 解析 以重物为研究对象,重物受到重力mg、OA绳的拉力F1、OB绳的拉力F2三个力而平衡,构成矢量三角形,置于几何圆中如图: ![]() 在转动的过程中,OA绳的拉力F1先增大,转过直径后开始减小,OB绳的拉力F2开始处于直径上,转动后一直减小,B正确,A、C、D错误. 13.(2021·山东滨州市高三期末)如图13所示,竖直杆固定在木块C上,两者总重为20 N,放在水平地面上,轻细绳a连接小球A和竖直杆顶端,轻细绳b连接小球A和B,小球A、B重均为10 N.当用最小的恒力F作用在小球B上时,A、B、C均保持静止,绳a与竖直方向的夹角为30°.下列说法正确的是( ) ![]() 图13 A.力F的大小为5N B.绳a的拉力大小为10N C.地面对C的摩擦力大小为10 N D.地面对C的支持力大小为40 N 答案 B 解析 以A、B整体为研究对象,整体受到重力2G、绳a的拉力FTa和恒力F,当恒力F的方向与绳a拉力的方向垂直向上时,F最小,如图所示. ![]() 则F=2Gsin 30°=2×10×N=10 N,FTa=2Gcos 30°=2×10×N=10N,故A错误,B正确;以A、B、C及竖直杆整体为研究对象,根据水平方向受力平衡可得Ff=Fcos 30°=10×N=5N,根据竖直方向受力平衡可得FN+Fsin 30°=GA+GB+GC、杆,解得FN=GA+GB+GC、杆-Fsin 30°=10 N+10 N+20 N-10×N=35 N,故C、D错误. (责任编辑:admin) |
- 上一篇:没有了
- 下一篇:大单元导学案一 第2课时 牛顿运动定律与直线运